
1

Introduction to Database
Systems

CSE 444

Lecture #9
Jan 29 2001

2

Announcements
aMid Term on Monday (in class)
`Material in lectures
`Textbook
⌧Chapter 1.1, Chapter 2 (except 2.1 and ODL),

Chapter 3 (except 3.2, 3.8), Chapter 4.1, 4.5, 4.6,
Chapter 5 (except 5.10), Chapter 6.1, 6.2, 7.1, 7.3

`Mid Term will be in class closed book exam
aExtra Office Hours
`Surajit (Today) 4.50-5.50
`Yana Thu 4.30-5.30

aSolution to HW#1 available

Decomposition: Schema
Design using FD

Reading: Chapter 3.6, Chapter 6.1,
Chapter 6.2

4

Review: Closure, Key,
Superkey

aGiven a set of attributes M over R(A), and
a set of Fds on R, closure(M) is the set of
all attributes L such that M->L
aIf Closure(M) = A, then M is a superkey
aM is also a key if no proper subset M’ of

M satisfies closure(M’)=A
`Superkey: A set of attributes containing key

5

Review: BCNF
aA relation R(A) is in BCNF if for every nontrivial

dependency X->Y on the relation R, X is a
superkey
`Every 2-column relation is in BCNF. Why?
`Relation in BCNF does not have update or deletion

anomalies
aIf relation R(A) violates BCNF, decomposition is

needed
`How to find a FD that violates BCNF?
`Check Closure(X) of every FD X->Y in the given set

of dependency

6

Decomposition Requires
Care

CameraDoubleClick

CameraOneClick

GadgetGizmo

CategoryName

Camera29.99

Camera24.99

Gadget19.99

CategoryPrice

Camera29.99DoubleClick

Camera29.99OneClick

Camera24.99DoubleClick

Camera24.99OneClick

Gadget19.99Gizmo

Categor
yPriceName

When we put it back:

Cannot recover information

2

7

Decomposition Strategy
for BCNF

Find a FD that violates the BCNF condition (RHS =
all nontrivial attributes functionality determined by LHS):

A , A , … A1 2 n
B , B , … B

1 2 m

A’sOthers B’s

R1 R2

8

Example

aMovie (title, year, studio,president, pres_addr)
`S = {Title, year -> studio,

studio -> president, president->pres_addr}
aViolating FD: studio -> president, pres_addr
aDecompose: Studio1(studio, president,

pres_addr), Movie1(title, year, studio)
aIs Studio1 in BCNF?
`What are applicable FD-s on Studio1?

9

Projecting FD

aGiven F over R, what is the FD that must hold
over R’, where R’ is obtained by decomposition?

aCompute closure(X) for each subset X of R’
aX-> B holds in S if
`B in R’
`B in closure(X)
`B not in X

aSee Examples 3.39 and 3.40 in text

10

Example: Projecting FD

aR(A,B,C,D,E) decomposed into S(A,B,C)
and ..
aFD on R: A->B, B->E, DE->C
aClosure(A) =?
aClosure(B)=?
aClosure(C) = ?
aClosure({A,B}) =?

11

Decomposition Based on BCNF is
Information Preserving

Attributes A, B, C. FD: A C

Relations R1[A,B] R2[A,C]

Tuples in R1: (a,b), (a,b’)

Tuples in R2: (a,c), (a,c’)

Tuples in the join of R1,R2: (a,b,c), (a,b,c’), (a,b’,c), (a,b’,c’)

Can (a,b,c’) be a bogus tuple? What about (a,b’,c’) ?

12

Decomposition into BCNF is
Not Dependency Preserving

aStreet, city -> zip, zip -> city
aKey: (street,city), (street,zip)
aConsider (Street,zip) and (zip,city)
`How to check street, city -> zip?
`Not dependency preserving!

a3NF
`Allow FD if LHS is part of a key (prime)

3

Problems with
Decompositions

aThere are three potential problems to consider:
� Some queries become more expensive.
⌧e.g., find employee and department names

� Given instances of the decomposed relations, we
may not be able to reconstruct the corresponding
instance of the original relation!
`Checking some dependencies may require joining

the instances of the decomposed relations.
aTradeoff: Must consider these issues vs.

redundancy.

Summary of Schema
Refinement

aIf a relation is in BCNF, it is free of redundancies that
can be detected using FDs.

aIf a relation is not in BCNF, we can try to decompose
it into a collection of BCNF relations:
`Lossless-join decomposition into BCNF is always possible
`Lossless-join, dependency preserving decomposition into

BCNF is not always possible Lossless-join, dependency
preserving decomposition into 3NF is always possible

`Decompositions should be carried out and/or re-examined
while keeping performance requirements in mind.

`Various decompositions of a single schema are possible.

Constraints and Triggers

Reading: Section 6
(MidTerm: 6.1 and 6.2 only)

16

Constraints

aA constraint = an assertion about the
database that must be true at all times
aPart of the database schema
aCorrespond to invariants in programming

languages

17

Constraints
aCREATE TABLE movie_titles
`(title CHARACTER(30) NOT NULL,..)

aCREATE TABLE distributor
`(dist_name CHARACTER(30) UNIQUE,..)
`May be NULL

aCREATE TABLE movie_titles
`(title CHARACTER(30) PRIMARY KEY,..)
`Unique and not null

aCREATE TABLE movie_stars
`(movie_table CHARACTER(30) NOT NULL

REFERENCES movie_titles,..)
`Many-one (mapping must exist) 18

SQL for Keys and Reference Keys

CREATE TABLE Books (
isbn CHAR(11),
title CHAR(20),
pubname CHAR(25),
pubdate DATE,
PRIMARY KEY (isbn),
FOREIGN KEY (pubname) REFERENCES Publishers (name))

4

19

Declaring Keys and
Foreign Keys

aComposite Key Syntax
`Primary Key (col1, col2)
`Unique (col3)

aForeign Key Syntax
`Foreign Key <attributes> REFERENCES

<table> (<attributes>)
`Non-NULL value in Foreign Key must be

present in the reference table

20

Enforcing Constrainrts

aKey constraint
`Check on update/insert
`Use indexes for efficient validation

aReferential constraint
`Default: Reject modifications that violate constraint
`Cascade: Delete referencing rows
⌧Delete movie => movie_stars deleted

`Set Null: Set referencing column value to NULL

21

Example

aCREATE TABLE Studio (
a..
apresC# INT REFERENCES

MovieExec(cert#)
`ON DELETE SET NULL
`ON UPDATE CASCADE)

22

CHECK Constraint

aCHECK(search-condition)
aLike Where clause in Selection queries
aValue-based check
`..CHECK (movie_type IN (‘Horror’, ‘Thriller’,..))

aSimple check
`.. CHECK (cost < 100 and cost > 0)
`Use to verify min/max/set of intervals

aComplex
`.. CHECK (cost < (select max(price) from

Walmart_Store))

23

ASSERTIONS

aNot attached to table declaration
aSpecifies a multi-table constraint
aCREATE ASSERTION max_inventory
`CHECK ((SELECT SUM(movie_cost) From Movies) +

(SELECT SUM(music_cost) From Music) < 1000))

aDatabase must satisfy assertions at all times
`Tuple constraint enforced only when table is not

empty

24

Deferrable Constraints

aBy default, constraints are checked at the
end of each SQL statement
aA DEFERRABLE constraint is checked only

when the transaction is committed

5

25

TRIGGERS

aTells what followup actions to take after
execution of a SQL

aCREATE TRIGGER NetWorthTrigger
`AFTER UPDATE of networth ON MovieExec
`REFERENCING OLD AS ot NEW AS nt
`WHEN (ot.NetWorth > nt.NetWorth)
`UPDATE MovieExec
`SET NetWorth = ot. Networth
`WHERE …
`FOR EACH ROW .. Tuple vs. statement granularity

26

Privileges, Users, Security

Reading: Chapter 7.4

27

Granularity of AC

aGRANT privilege_list
aON object
aTO user_list [WITH GRANT OPTION]
aPrivilege_list
`Select, Insert, Delete, Update, References, Usage

aObject
`Table, Columns, Views, Domains, Transactions..

28

Examples

aGRANT SELECT ON movie_titles TO
PUBLIC
aGRANT REFERENCES (title) ON

movie_titles TO USER1
aGRANT SELECT ON movie to kirk
aWITH GRANT OPTION
aGRANT SELECT ON movie to Rob

29

REVOKE

aREVOKE <privilege list> ON <database
element> FROM <user list>
`CASCADE: All privileges granted based on

revoked privileges are withdrawn
`RESTRICT: Allows execution of REVOKE only

if there is no implied CASCADE

aREVOKE GRANT OPTION FOR ….
aFollow examples 7.24-7.26

Concurrency Control I:
Transactions, Schedules,

Anomalies

6

Why Have Concurrent
Processes?

aBetter throughput, response time
aDone via better utilization of resources:
`While one process is doing a disk read, another can

be using the CPU or reading another disk.

aDANGER DANGER! Concurrency could lead
to incorrectness!
`Must carefully manage concurrent data access.
`There’s (much!) more here than the usual OS tricks!

Transactions

aBasic concurrency/recovery concept: a
transaction (Xact).
`A sequence of many actions which are

considered to be one atomic unit of work.

aDBMS “actions”:
`(disk) reads, (disk) writes
`Special actions: commit, abort

The ACID Properties

aA tomicity: All actions in the Xact happen, or
none happen.

aC onsistency: If each Xact is consistent, and
the DB starts consistent, it ends up consistent.

a I solation: Execution of one Xact is isolated
from that of other Xacts.

aDurability: If a Xact commits, its effects persist.

Passing the ACID Test

aConcurrency Control
`Guarantees Consistency and Isolation, given

Atomicity.

aLogging and Recovery
`Guarantees Atomicity and Durability.

aWe’ll do C. C. first:
`What problems could arise?
`What is acceptable behavior?
`How do we guarantee acceptable behavior?

Schedules

aSchedule: An interleaving of actions
from a set of Xacts, where the actions
of any 1 Xact are in the original order.
`Represents some actual sequence of

database actions.
`Example: R1(A), W1(A), R2(B), W2(B),

R1(C), W1(C)
`In a complete schedule, each Xact ends in

commit or abort.
aInitial State + Schedule → Final State

T1 T2

R(A)

W(A)

R(B)

W(B)

R(C)

W(C)

Acceptable Schedules

aOne sensible “isolated, consistent” schedule:
`Run Xacts one at a time, in a series.
`This is called a serial schedule.
`NOTE: Different serial schedules can have different

final states; all are “OK” -- DBMS makes no guarantees
about the order in which concurrently submitted Xacts
are executed.

aSerializable schedules:
`Final state is what some serial schedule would have

produced.
`Aborted Xacts are not part of schedule; ignore them for

now (they are made to `disappear’ by using logging).

7

37

Transactions:
Serializability

time

processes

quantity=4

order(3)

order(3)

Read: q=4

Read: q=4

Write: 1

quantity=-2 ????

Write: -2

t1 t2 t3 t4

OK

OK

Serializability Violations

aTwo actions may conflict when 2
xacts access the same item:
`W-R conflict: T2 reads something

T1 wrote; T1 still active
`R-W and W-W conflicts:

Similar.
aWR conflict (dirty read):
`Result is not equal to any serial

execution!
`T2 reads what T1 wrote, but it

shouldn’t have!!

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

Commit

R(B)

W(B)

Commit

transfer
$100 from
A to B

add 6%
interest to
A & B

Database is
inconsistent!

More Conflicts

aRW Conflicts (Unrepeatable Read)
`T2 overwrites what T1 read.

`Again, not equivalent to a serial execution.
aWW Conflicts (Lost Update)
`T2 overwrites what T1 wrote.

`Usually occurs with RW or WR anomalies.
⌧Unless you have “blind writes” (as here).

T1: R(A), R(A), C
T2: R(A), W(A), C

T1: W(A), W(B), C
T2: W(A), W(B), C

Now, Aborted Transactions

aSerializable schedule: Equivalent to a
serial schedule of committed Xacts.
`as if aborted Xacts never happened.

aTwo Issues:
`How does one undo the effects of a xact?
⌧We’ll cover this in logging/recovery

`What if another Xact sees these effects??
⌧Must undo that Xact as well!

Cascading Aborts

aAbort of T1 requires abort of T2!
`Cascading Abort

aWhat about WW conflicts & aborts?
`T2 overwrites a value that T1 writes.
`T1 aborts: its “remembered” values are restored.
`Lose T2’s write! We will see how to solve this, too.

aAn ACA (avoids cascading abort)
schedule is one in which cascading abort cannot
arise:
`A Xact only reads data from committed Xacts.

T1 T2

R(A)

W(A)

R(A)

W(A)

abort

Recoverable Schedules

aAbort of T1 requires abort of T2!
`But T2 has already committed!

aA recoverable schedule is one in
which this cannot happen.
`i.e., a Xact commits only after all the Xacts it reads

from commit.
`ACA implies Recoverable (but not vice-versa!).

aReal systems typically ensure that only
recoverable schedules arise (through locking).

T1 T2

R(A)

W(A)

R(A)

W(A)

commit

abort

8

43

COMMIT and ROLLBACK

aCan end a database operation in two
ways:
`EXEC SQL COMMIT;
`EXEC SQL ROLLBACK;

